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BUNDLE ADJUSTMENT IN INDUSTRIAL PHOTOGRAMMETRY 

Abstract 

Two ways of determining initial values for the bundle adjustment in industri
al photogrammetry are first explained . One approach is based on solving the 
11 parameters of the linear relation between photo and object space coordi
nates . Those parameters are related to the nine inner and outer orientation 
elements and two additional parameters . Six control points are needed per 
photo, or fewer if linear constraints for partly known orientation are added . 
Another approach is a closed solution for space resection from four control 
points, or fewer if outer orientation is partly known . It is based on solv
ing the distances between camera station and control points from second de 
gree equations by a search procedure . 

The bundle adjustment is performed iteratively : Orientation of photos, in
tersection of new points, repeated orientation , etc . The method allows for 
additional parameters , and additional constraints for given spatial data e . g . 
distances . 

Lastly experiences with photogrammetry applied in shipbuilding are given . 

Introduction 

The bundle method with its general assumptions about camera orientation is 
becoming more and more popular in analytical photogrammetry . This trend is 
perhaps more pronounced in industrial than in topographical applications . 
One reason may be that assumptions such as strip photography with fixed over
laps, near vertical camera axis, constant Z, flat terrain etc . , facilitating 
stepwise adjustment, cannot always be realized in industrial photogrammetry . 

Topographic photogrammetry uses also the traditional stepwise aerotriangula
tion to provide approximate initial values for bundle adjustment . This is 
due to the fact that no approximate initial values are needed other than 
those directly derived from the special assumptions such as near vertical 
photography etc . In addition the stepwise method provides an effective error 
search . 

'rhis paper gives first two approaches for providing approximate initial val 
ues for bundle adjustment under more general assumptions . Then an iterative 
technique to perform the bundle adjustment on a microcomputer is explained. 
Lastly some practical applications are reported . 

The approach of the 11- parameter solution 

In [1] the method of direct linear transformation (DLT) between the compara
tor system x', Y' and the object space X, Y , Z is given . The basic equat·ions are : 

b X + b y + b z + b 
x '= 

1 1 12 1 3 14 
b31x + b y + b3 3z + 1 32 (1) 

b21x + b y + b23z + b24 
y' = 

22 

b31x + b32y + b z + 1 3 3 

where b's are the 11 transformation parameters . When at least SlX g1ven con-
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trol points are imaged in a photo, b's can be solved by least squares (:Lvv = 
min) from the following equations : 

b 1 4 + b 1 I X + b I 2 Y + b 1 3 Z - x' X b 3 1 - x' Y b 3 2 - x' Z b 3 3 - x' = v 
X 

b24+b 21 X + b 22Y + b 23 Z- y'X b 31 - y'Y b 32 - y' z b 33 - y'= v 
y 

( 2) 

In [ 2 ] the functional connection between 'ds and the orientation parameters is 
given; in addition two non-linear constraints are derived . In Appendix A 
these constraints are modified to formulas for direct dete~mination of affin
ity dJ'I and lack of orthogonality dK , see (A- 7) . These two additional para
meters (with expectations ~ 0) might be used to detect gross errors . If 
redudant control is available, gross errors can be located by examining dif
ferent solutions from different combinations of minimum control . It might , 
therefore, be an advantage if additional information on inner and outer ori 
entation is available . Introducing this information as linear constraints, 
would reduce the required number of given control points . 

In Appendix A three linear constraints for known camera station (X 0 , Y0 , Z
0

) 

are derived, see (A- 8) . Further, five constraints (with one additional un
known) are derived in Appendix Bin the case of known rotations V,K (fig . C-3) 
and inner orientation (including dM,dK) . See (B-2),(B- 3) and also Table l . 
Provided that two axes X, Y of the object system are horizontal, information 
on V,K can be derived directly when the camera is eqiupped with graduation 
marks to measure rotations . It should be noticed that information on inner 
orientation alone , does not give linear constraints . Due to this restric
tion of the 11- parameter solution, another approach might be more favourable . 

The approach of c l osed soluti on for space resection 
(known inner ori entati on) 

In [6 ] a procedure for this solution is given , assuming that the lmage plane 
is nearly parallel to the object plane . It is shown in Appendix Chow to 
perform the resection without this assumption , by stepwise determination of 

a) distances between camera station and three given control points , 
b) camera station, and 
c) rotation angles . 

A fourth control point must be known to eliminate false solutions . In Appen
dix D is shown how assumed values of V, K can reduce the need for given con
trol points, see also Table 1 . 

11-parameter solution Closed solution for 
resection 

Additional 
Linear constraints 

Min . no . con- Additional Min . no . con-
information trol points information trol points 

- - 6 - 4 

Xo,Yo , Zo (A- 8) 4 Xo,Yo,Zo 3 

V,K 2 

V, K, c 1 V,K 

} x 0 =y 0 =dM=dK=O J 
( B-2 ) , ( B- 3 ) 4 

Xo,Yo,Zo 
l 

Table l . Minimum control ln different cases of additional information 

263. 



Block trianqulation by intersections 

In [8 ] a block triangulation effected by a series of consecutive resections 
and intersections is proposed . Each iteration cycle solves either the ori
entation of a single photo (resection) or the coordinates of a single point 
(intersection). The resections are based on both given points and the points 
which are determined in the previous intersections . The points are regarded 
as error free . During the intersections, the orientations from previous re
sections are regarded as error free . The corresponding series of consecutive 
solutions converges towards a final solution which is practically equivalent 
to a simultaneous least squares adjustment. We will show in more detail how 
this iteration technique can be utilized for bundle adjustment in industrial 
photogrammetry . On the basis of different approaches of resection and inter
section (see [2,9] andalsoAppendix C), the following procedures are proposed 
1n the two cases of (I) unknown and (II) known inner orientation of a photo. 

I) ~e inner orientation including dM,dK is unknown (the calibration case) . 

In this case the formulas used in the initial resections and intersections 
can also be used in the iterative adjustment . Thus, the procedure is: 

a) In the resection cycle, the 11 parameters b of a single photo are solved 
from equations (2) with weight (4), utilizing available control including 
the triangulation points determined in previous intersections. Initial 
determination ofb's may ·1,1tilize approximate additional data, see Table l. 

b) In the intersection cycle, the coordinates of the points are solved, point 
by point, from the following equations derived from (1): 

v 
X 

(y'b - b )X+ (y'b - b )Y + (y'b - b )Z + y 1 - b = v 
31 21 32 22 33 23 24 y 

-1 p 
= { 1 if ini-tial determination 

(b x) 2 + (b Y) 2 + (b z) 2 + 1 
31 32 33 

( 3) 

(4) 

Pis weight given to (3) . b's in (3) and (4), and X,Y,Z in (4) are known 
values derived in previous resections and intersections . 

II) Known irmer orientation (the orientation case) . 

1 . Initial determination 

~) The initial resections are performed as closed solutions for space resec
tion, to determine initial orientation data (X 0 ,Y 0 ,Z 0 ,K,V,~ and the cor
responding orientation matrix a for a single photo . (Appendixes C,D). 

b) The procee.ding; intersections are executed by the method given in [9] to 
determine initial coordinate values X,Y,Z of a single point . 

2 . Final block adjustment by repeated resections and intersections . 

Each iteration cycle uses the following linearized equations derived from 
(A-1), to solve either (a) corrections dX0 ,dY 0 ,dZ 0 ,dK,dV,da to the pre
vious determined orientation of a single photo (resection), or (b) cor
rections dX,dY,dZ to the previous determined coordinates of a single 
point (intersection): 



of of 
-(x - x ) + f + oX X dXa + X 

dX v = . . . . . . ..... 
X 0 X ox 0 

( 5) 
of of 

v = - (y - Yo) + f + _____L dX + _____L 
dX . . . . . . ..... y y ox a ox 0 

Remarks 

-The approach of stage (la) in the orientation case can be used for initial 
resections in the calibration case too, if approximate values of inner 
orientation are available. Initial values of l:Js are then derived from (A-5 ). 

- In the calibration case, the resection cycle can introduce any given para
meter of inner orientation through additional constraints nnd +inearization 
with approximate values of b' s from previous resections. (See Appendix A) . 

- It is preferable to perform all the initial resections and intersections 
before entering the final adjustment. An example is given in fig . 1. 

b. known points 
o unknown points 

Fig . 1. Initial determination of orientations and points in the sequence: 
I, II, 7, III, 8, IV, 9 . Four control points are needed per photo . 

Additional parameters and additional constrai nts for given 
spatial data . 

The equations (5) to be used in the resection cycle, can be modified to in
clude additional parameters dM;,dK;, which are specified for each individual 
photo i (i = 1,2 .. n). (See (A-3),(A-4). In the procedure proposed for the cali
bration case, ~,dKi are related tab's through (A-7)) . However, if it is a 
fcmdamental assumption, dM.: ,dKi con be f'orced to ootain the same expected 

.L • .. • • • 

value for all photos by addlng followlng welghted constralnts when repeatlng 
the resection cycle (for the sake of simplicity, only affinity is regarded) : 

v. + ol\ = dM. ' weight = p 
lk lk k 

where 

0 k = 1 

ill\ { n 
= 

df\-1 /n 1 + :L v. k > 
i=1 lk-1 

{ 
some introduced value k = 1 

-1 
pk = 

:LV~ /(n•m2
) k > 1 

lk-1 0 
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dM 
v 
mo 
k 

== 
== 
== 
== 

"observation" 
"observational error" 
assumed value of standard error of unit weight 
index for repetition of the resection cycle 

Spatial data, G, as distances between points (X,Y,Z) might be introduced ln 
the adjustment as follows : 

Let 
G == f(X,Y,Z) ( 5) 

After every repetition of the intersection cycle, the values obtained for 
X,Y,Z are further corrected by dX,dY,dZ to fulfil (5) and the minimizing 
condition 

L:dXdX + L:dY dY + L:dZdZ == mln 

Practical application 

Inspired by the latest efforts to adapt photogrammetry to measurement of 
marine constructions [3,4,5] , the Norwegian Institute of Technology and some 
Norwegian shipyards decided in 1978 to examine the potentials for applying 
this measuring. technique within the Norwegian shipbuilding industry . In the 
first phace of the project, this examination has been consentrated on appli
cation of analytical photogrammetry in checking the dimensional quality of 
offshore platforms during construction . The first experiment work was car
ried out at the Fredrikstad Mekaniske Verksted where an indoor construction 
of an offshore platform took place . Similar realization of this kind of 
photogrammetric measurement and obtainable accuracy are reported in [5 ]. 

From practical experiences gained so far in the experiment work, and theo
retical considerations as given ln this paper, the following conclusions are 
made: 

- Flexibility in planning the camera directions, and the positions of camera 
stations is important to obtain a fast and non-hindering photographing. 

- It is difficult to make geodetic measurements of control points without 
obstructing the construction work, and also to obtain free sights from the 
camera stations to the targets of those points . 

- Therefore , the analytics of the bundle adjustment should, as far as pos
sible, not force restrictions on planning the photography and the control, 
other than those of pure accuracy reasons. 

-During the comparator measurements, on-line computations are almost neces
sary to ensure a fast and reliable computational reconstruction . 

When a single photo has been measured, the following on- line computations 
are proposed : 

a) Averaging of repeated measurements and transformation on fiducial marks . 

b) Resection on the basis of all information obtained so far in the process . 

c) Intersection of points . 

From these computations , the operator can immediately decide on data reJec
tion or remeasurements . 

When all the photos of a suitable sub- block are measured, a preliminary block 
adjustment by intersections may reveal further (smaller) gross errors . 

It is possible to perform the on-line computations on a micro computer . 
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Appendix A. The relationship between the ll parameters of DLT and the 
outer and inner orientation elements including two additional 
parameters . 

a 

--,-J_J 
M1 x 

Fig . A-1. a : No image deformation b: Additional image deformation 

In fig. A-la, the orthogonal coordinates x ,y - to be measured if no image 
deformation is assumed- are related to object space coordinates X,Y,Z as: 

all (X - Xo) + al2(Y - y ) + a (Z - Zo) 
- x = (-c) 

0 I 3 
( = f ) X 

a31 (X - Xo) + a (Y - Yo) + a (Z - Zo) 0 X 32 3 3 
(A-1) 

a21 (X - Xo) + a (Y - Yo) + a (Z - Zo) 
= (-c) 

22 23 
( = f ) y -Yo a3 I (X - Xo) + a (Y - Yo) + a (Z - zo ) 32 3 3 y 

where c,x0 ,y 0 are inner orientation elements, X0 ,Y 0 ,Z 0 are camera station 
coordinates' and as are the nine elements of an ortogonal matrix dependent on 
three rotations (see [7] p. 27) . The six orthogonality conditions are : 

3 
I: a .. = 1 ; 

j-1 lJ 

3 

:L a .. · a . = 0 ; 
j=I lJ KJ 

l = 1 . . 3 

(A-2) 

(i,k) = (1 ,2)' (2,3)' (1 ,3) 

If, however, the image is deformed in such a way that x ,y are rotated K~ ,K2 
and multiplied by M1 ,M2 respectively, the measured coordinates are x,y (flg. 
A-lb) y ith following relations to x ,y : 

(A-3) 

into which the lack of orthogonality dK and affinity dM are introduced by 
substituting: 

M1 = 1 + dM, (A-4) 

Following equations derived from (l), (A-1) and (A-3), express b's in terms of 
outer and inner orientation: 

b . = 
3J 

1 
A a . 

3J 

-b. X 
ll 0 

-b. y 
l2 0 

- b. z 
l3 0 

(A-5a) 

J = 1 . . 3 (A-5b) 

j = 1 .. 3 (A-5c) 

j = 1 . . 3 (A-5d) 

l = 1 ,2 (A-5e) 
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Following equations to solve x 0,y 0 ,c,dK,dM as functions of~s are derived from 
(A-2) and (A-5) (where M1,M2,K 1 ,K2 are related to dK , dM by (A-4)): 

A-2 3 
= L: 2 b 3. 

1 J 
(A-6a) 

= ;,_2 ·L:bl .· b3. 
J J 

x M casK + y M sinK (= x') 01 1 02 2 0 (A-6b) 

= ;,_2 , Lb .. b 
2J 3j 

(A- 6c) 

(c •M •casK ) 2 + (c •M · sinK ) 2 (= c 2) 
1 1 2 2 1 

= ;,_2 · L:b2 . '2 
1J xo (A-6d) 

= A 2 ·L:b2 . '2 
2J Yo (c •M •sinK )2 + (c · M •casK ) 2 (= c 2) 

1 1 2 2 2 
(A-6e) 

-(c •M ) 2sinK · casK + (c •M ) 2sinK •casK (= t.)= A. 2•L:b . •b .-x ' y ' (A-6f) 
1 1 .1 2 2 2 1J 2J 0 0 

First, xh , y~,c 1 ,c 2 and t., as introduced in (A-6) , are derived as functions 
ofb's (We notice that dK = dM = 0 makes x = x' y = y 1 c = c or c = c ) . 0 0' 0 0' 1 2 . 
Then, eliminating c from (A-6 d,e,f), and introducing (A-4), we get the fol -
lowing equations to solve dM and dK : 

sin2dK = 2t./(ci + c~) 

dM/(1 + dM
2) = (c~ - c;)/2(c~ + c;)cos2dK 

With good approximation, the solution is 

dK = t./(c 2 + c 2 ) 
1 2 

Thus, also M 1 ,M~,K 1 , K 2 are found, 
from (A-6 b,c,d). 

dM = (c~ - c~)/2( c ~ + c~) (A-7) 

see (A-4), so that we can solve c,x~,y~ 

From (A-5) the outer orientation is found : a's are solved from (A-5 a . . d) ; X ,Y , . 
Z0 are solved from following equations derived from (A-5 a,d,e) (b34 = 1 ~ ~· 0 

bi 1X0 + bi 2Y0 + bi 3Z0 +bitt= 0 i = 1 . . 3 (A-8) 

'Remark : The derived expressions c = fc(b), xo = f:xo(b), ... can also be con
s idered as additional non-linear constraints between Vs for gl ven c, XO , ••• 

Appendix B. Derivation of linear constraints used in the 11-parameter so-
lution due to additional information on the orientation . 

It will be assumed that v,~ (fig . (C-3)) and care known, further that the 
image coordinates refer to the principal point and are not deformed (see 
fig . A-1) . Thus, 

(B-1) 

Consequently, also a 13 , a 23 , a 33 ln (A-1) are known, because (see (C-8) and 
also [7] p . 27): 

a 13 = sinvsinK a 23 = sinvcosK a 33 = cosv 

Thus, introducing (B-1) into (A-5 b,c,d), when j = 3, we get following three 
linear constraints with one additional unknown (1/A) : 
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Introducing (B-1) into (A-5 b,c,d) and using 

:La. a. = 0 :La. a. = 0 ll l3 l2 l3 

we obtain the following non-linear constraints: 

b 11 bl 3 + b b23 + c 2b b = 0 2 1 3 1 3 3 

b 12 b 13 + b22 b2 3 + c 2b b 3 3 = 0 32 

However, subs~tut~ng bJ 3, b 23 , b 33 ?Y their expresslons derived from (B-3), 
we get the followlng llnear constralnts: 

a13 b 11 + a23 b21 - c a3 3 b 31 = 0 
(B-3) 

al3 b12 + a23 b22 - c a3 3 b32 = 0 

Appendix C. Closed solution for resection in space. Determination of (a) 
distances between camera station and control points, (b) camera 
position, and (c) rotations. 

z-zo y-yo 

82 
I ' 
~t', 

' '\ ... 
'~ 

.,., .... 
z ~ 

..... 
81 ...-

tcy 
.... ..... .,., .... 

pl 
X 

Fig. C-1 Geometry of resection in space 

a) From fig. C-1, the following 2. degree equations to solve D's are derived: 

82 = D2 + D2 - 2D D2 cosa1 (C-la) 1 1 2 1 

82 = D2 + D2 - 2D 2 D3 cosa2 (C-lb) 2 2 3 

82 = D2 + D2 - 2D D3 cosa
3 

(C-lc) 3 1 3 1 

where a's are derived from measured image points (x,y) and inner orientation 
x 0 ,y

0
,c, whilst 8's are derived from control points (X,Y,Z) . Thus, a 1 and 

81 are: 
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cosa1 = ( d2 + d2 - si)/2d1d2 1 1 

with d~ = ( x· X )2 + (y· y )2 + c2 l = 
l l 0 l 0 

s2 = ( x1 - X )2 + (y 1 - y )2 1 2 2 

S~ = (X1 - X2)2 + (Y1 - Y2)2 + (Z1 - Z2)2 

Simular formulas are derived for a 2 ,a 3 and S2 ,S
3

• 

One approximate distance is known 

( C-ld) 

1,2 

(C-le) 

D'scan be solved iteratively from (C-1) with initial approximate value of one 
distance; say D1. Solving D2 and D

3
from (C- la) and (C-lc), we get: 

l = ±1 

j = ±1 

Introducing ( C-2) into ( C-lb), vre get one equation of the type : 

s~ = f(D 1 , i,j) 

or linarized 
2 df 

s 1 - f(D 1,i,j)- aD Lm 1 = o 
1 

df 
where aD

1 

(C-2) 

(C-3) 

It should be noticed that i,j must be determined by looking for which of the 
four cases ( i ,j )=( 1,1), ( -1,1), ( 1,-1), ( -1 ,-1) fulfils the inequality condition 

(c-4) 

where ~Sis a chosen test value dependent on the accuracy of D1. In case of 
ambiguity (see fig . C-2), a fourth control point is needed . If (C-4) is not 
fulfilled in either of the four cases, some mistake has been made . 

No approximate distances D are known 

In this case the program itself must search for solutions of D ,i,j. Because 
the solutions must make the right hand sides of (C- 2) positive

1
and real, the 

following conditions must. be fulfilled : 

D1 < S1/sina1, and l = ±1 if c1 1 < 100g 

D < s ' and l = 1 if a1 > 100g 
1 1 

D1 < S lsina 31 . 3' and J = ±1 if a3 < 100g (C-5) 

D1 < s3 and j = 1 if a3 > 100g 

D > s if l = -1 D > s if j = -1 else D > 0 1 1 1 3 1 
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Thus, the search for solutions fulfilling ( C-4) might be effected by trying 
a chosen set of different values for D1,i,j within the actual range (C-5). 
To obtain an effective and fast solution, a more sophisticated procedure 
described in textbooks on numerical analysis could be applied . In fig. C-2, 
different solutions for D's, obtained ln a theoretical example, are shown. 

100 

0 

Given: a =a =a =33-3
1 g 

1 2 3 

81=82=83=100 

100 D' 200 
0 

Case 1 D0 

0 

p1 
Geometri of case 1 

200 

100 

0 ~-------r------~~·D1 
100 /200 

Cases 2 and 3 Do 

Yf(D
1 

,-1 , -1) 

10: t- ~.n, 
100 200 

Case 4 

Case l , 
D1 D2 D3 d 

1 1 1 {~o Do Do 
D' Do Do 0 

2 -1 1 Do D' 0 Do 
3 1 1 Do Do Do' 
4 -1 -1 No solution 

Solutions 1n different cases 

Fig. C-2. The search for solutions ln a theoretical example of resection 

b) The coordinates X ,Y ,Z of the camera station 0 are then determined. 
Th • 0 0 Q I I!' •• I I e correspondlng coordlnates X

0 
,Y ,Z ln the auxlllary system X ,Y ,Z' 

( 
• ) • 0 0 . flg . C-1 are flrst solved from the equatlons: 

(X!- X') 2 + (Y!- Y') 2 + (Z!- Z') 2 = D~ · l 0 l 0 l 0 l' l = 1 .. 3 

where the coordinates X! ,Y! ,Z! of the three points P. are: 
l l l l 

p1 : (0,0,0) 

with 'rwo solutions for z0 are obtained 

X~,Y~,Z~ are then transformed to system X~Y,Z by (C-6) derived from the 
following three single rotations: 
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{~t r - X} n =~{~} {~:} =~{~L~ y: ' = RK y2 

zz zl z K,0 z K 

with 

{ cosK sinK ~L { c~s~ 0 sinO! 
RQ ={ < ~sQ 0 

~} RK = -si~K casK R_ = 1 
0 f' sin.\2 

0 1 J Q -sinG? 0 cos<!> -sln.\2 cos .It 

tgK = 

tgl) 

zz 
K zz - zl 

= -X-
2

- = --;( -X-
2
---X-

1 
""") c_o_s_K_+_(:;-Y-

2
---Y-

1
_,.)-s-:-i-n-K 

K 

tg.Q 
-(X

3
- X 1 )sin~cosK- (Y

3
- Y 1 )sin~sinK + (Z

3
- Z 1 )cos~ 

-(X
3

- X
1

)sinK + (Y
3

- Y
1

)cosK 

Thus, 

{~} (C-6) 

L(x 
/ 

/ <~ J;, 
/ ..... 

Fig. C-3. Rotations a,V,K 
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c) Now we will show how to derive the rotations a,V,K and the corresponding 
rotation matrix a . The image points p . have the following coordinates in the 
object space system (see fig . 's C-1 ana C-3) : 

X = xo + d. coso y = Yo + d. coso 
' 

z = zo + d. coso l = 1,3 p. l x. p. l y . p. l z. 
l l l l l l 

where : d . =j(x - X )2 + (yp. - y )2 + c2 
l 0 0 p. 

l l 

coso = ( xo - ~. ~/Di' coso = (Yo - yp )/D. ' coso = (Zo - Zr. )/Di x. y. . l z. l l l l l l 

By the procedure (b) in this appendix, the coordinates XH,YH,ZH of the prln
ciple point H are derived in the object space system on the basis of points 
O(X 0 ,Y

0
,Z

0
) and p.(X ,Y ,Z ), i = 1 .. 3, and distances 

l pi pi pi 

HO = c, Hp. = j(x - X )2 + y - Yo)2; (i = 1,2) l . p. 0 p. 
l l 

USlng p3 to eliminate false solution. 

The three single transformations when rotating a,V,K are (see fig c-3) : 

l:l 
X - Xo x'l 

"vF]' 
r- x,l R{t = Ra y - y 

y: t 
= Y Yo = (C-7a) 

0 

Z - zJp z - z 
0 p z Jp ~,z P 

with 

Fsa slna 

~} ' 
{~ 

0 

s~n+ { COSK 
sinK 

:} Ra = ~na cos a R = cosv R = -s~nK COSK v K 
0 lO -sinv cosv 0 

Further we get from fig C-3: 

X - X ~ - X yp - Yo ~ - X 
p 0 0 0 

= = with z - z = -c ( C-7b) 
z - zo Zp - zo z - zo zp - zo p 0 

:p p 

Introducing XH,YH,ZH into (C-7a) , we can solve a,v (see also fig. C-3 ) : 

tga = 

Introducing x_ ,YP ,ZP 
--p 1 1 . 1 

and x y z into (C-7), we can solve K (see also 
p1' p1' p1 

fig. C-3) : 

tgK = tg(8 ' - 8) =tg8' -tg8 
1 + tg8'tg8 with 

2714.. 

YP -Yo 
1 

tg8 =---
X - x

0 PI 



tg0' 

Then a (=R) lS derived (for more detailed 

r- x,) r- X l rl! R y - y: ' Y Yo = R = R R R = a K\!a 21 

z z 0 P Z Z0 P a31 

Introducing (C-8) into (C-7 b) would give 

derivation, 

a12 a13 

a22 a2 3 

a32 a3 3 

(A-1) . 

- Z )sinv 
0 

see [7] p. 27): 

~Trig. ) = funct. of 
a,v,K 

(C-8) 

Appendix D. Space . resection with additional information on outer orientation 

Given are the lnner orientation (x0 ,y0 ,c), two control points P(Xp,Yp,Zp), 
corresponding image points p(~,yp) and rotations V,K . Unknowns are the 
camera station O(X

0
,Y

0
,Z

0
) and-ro~ation a. From fig . (C-3) are derived 

{

x'l ~x- xo lX'f lx') ~X- Xol IX'\ 
Y' r = R~ 1 

Y- y 0 Y' = R~ 1 
y' Y- Y0 ~ = R~ 1 

·y• ~' zp-z=-c (D-la) 

z'j z-z Z'J z' Z zj z•J '0 
'p Op p p Op p 

X - X 
= p 0 

z - zo p 

yp - Yo Yp - yo 

zp - Z0 = zp - Z0 
(D-lb) 

where R ,R ,R are the matrices in (C-7). a is derived from (D-1), or fig . 
C-3 K \! a 

__ tgK - tgK' 
tga = tg(K - K') - -

1 + tgKtgK' 

yp - y Y' - Y' 
2 p1 

with tgK = --------
XP - ~ 

P2 P1 
tgK' = --:----:-

X' -X' 
P2 P1 

, (X' ,Y' derived by (D-la)) . 
p p 

• 2 1 

Unknown Xo,Yo,Zo are derived from : 
' 

~ - - X X - xo YP. - Yo y - y 
0 :P· pi 0 

l l l = = l = 
zP. - zo z - zo zP. - zo z - zo p . p . 

l l l l 

where (X - xo), (Y - Yo), (Z - Zo) are derived by (D-la) . p. p . p . l l l 

In the case of that X
0

,Y
0
are given, one control point P1 lS needed . 

Yp - Y0 Y' 

- · ., _ tgK- tgK' 1 P1 
tga - tg(K - K ) - 1-+ tgKtgK' with tgK = Xp _ X , tgK' -

- 1 0 

where X' ,Y' are derived by (D-la). 
p1 p1 

Z
0 

is derived by 

275-

X' 
p1 

(D-lb) . 

1,2 

a is: 


